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[1] The problem associated with the large data gap on the
farside of the Moon is addressed for constructing a high-
resolution global gravity model. By localizing the power law
constraint and making it effective only within the farside and
limb regions, we mitigate the undesired power-limiting effect
on the nearside. Compared to the solution estimated from
Lunar Prospector and other satellite tracking data with the
globally-applied power law, the locally-constrained solution
shows significant improvement of the nearside gravity estimates.
Around the areas dominated by craters in the southern
hemisphere of the nearside, the correlation with topography
approaches nearly 0.95 and the admittance converges to 100–
110 mGal/km up to spherical harmonic degree 130, while the
globally-constrained solutions distort starting at degree 90.
The proposed analysis can benefit the science and operation of
other existing and future planetary missions and enhance the
geophysical interpretation of the gravity field. Citation: Han,

S.-C., E. Mazarico, and F. G. Lemoine (2009), Improved nearside

gravity field of the Moon by localizing the power law constraint,

Geophys. Res. Lett., 36, L11203, doi:10.1029/2009GL038556.

1. Introduction

[2] Direct tracking of the lunar-orbiting satellites from
the Earth is not possible over the farside due to the
synchronous rotation of the Moon about the Earth. Only
the limb region of the farside is covered but with increased
measurement noise [Konopliv et al., 2001], which results in
a lack of direct Doppler data over �40% of the entire lunar
surface. Recently, the SELENE mission obtained 4-way
Doppler data over the farside by indirectly tracking the
main orbiter with a small relay satellite [Namiki et al.,
2009]. Those data improved the farside gravity to spherical
harmonic degree �90. However, high-resolution gravity
information still comes from satellites with lower orbiting
altitudes such as Lunar Prospector [Konopliv et al., 2001],
for which no farside tracking data are available. The
orthogonal sets of spherical harmonic functions are the
candidates to parameterize the Newtonian potential fields
since they satisfy the Laplace differential equations. How-
ever, not all of them are necessarily resolvable especially
under the circumstance that the noisy data are not available
uniformly over the globe. In order to overcome such
problem, the power law, or Kaula’s rule [Kaula, 1966],

has been often used to obtain solutions of the gravitational
fields of the planetary bodies from analysis of un-evenly
sampled tracking data.
[3] The power law constraint, although it biases the

solution, stabilizes a global gravity field parameterized with
(non-localized) spherical harmonic functions, up to the
spatial resolution corresponding to the orbiting altitude, by
preventing high-degree terms from developing excessive
power [e.g., Marsh et al., 1990; Lemoine et al., 1997; Smith
et al., 1999; Konopliv et al., 2001]. The exploitation of
Doppler tracking data over the nearside of the Moon,
however, is limited due to the farside data gap, no matter
how high a gravity field is modeled in degree and order, as
noted by Konopliv et al. [2001]. Recently, Han [2008]
proposed that the global gravity field can be modeled by
implementing an alternative set of basis functions (both
regionally-concentrated ones and their complements). The
advantage over the ubiquitous spherical harmonic represen-
tation is that the nearside gravity field can be estimated
without introducing the power law constraint. It is then also
possible to simultaneously construct the nearside gravity
field to a high resolution in order to fully exploit the low
altitude measurements and the farside gravity field with a
low resolution.
[4] In this study, we extend the work by Han [2008]

discussing regional gravity fields with the line-of-sight
acceleration measurements, but in a fully dynamic mode,
to develop optimally-constrained global gravity models of
the Moon. The innovation is to apply the power law
constraint only over the farside and limb regions where
direct observations are non-existent or the observational
constraint is weak because of tracking geometry. The
nearside gravity field is estimated based on the tracking
data to degree and order 150. On the contrary, the farside
gravity field is obtained by means of the nearside tracking
data and the power law constraint.

2. Lunar Tracking Data

[5] In preparation for the Lunar Reconnaissance Orbiter
(LRO) mission, historical radio tracking data were ana-
lyzed at the NASA Goddard Space Flight Center (GSFC)
[Mazarico et al., 2008]. One goal was to have these data
ready to be incorporated early in the mission when there
would still be an insufficient number of new LRO measure-
ments to obtain a satisfactory high-resolution and high-
quality gravity field solution. We use data from the following
spacecraft missions; Lunar Orbiter 4 and 5, Apollo 15 and
16 sub-satellites, Clementine and Lunar Prospector (LP).
With its low-altitude (�100 km and �50 km in the nominal
and extended phases, respectively) polar orbit, LP is the
main contributor to the lunar data coverage over the near-
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side. The radio tracking data were processed with the orbit
determination software GEODYN II [Pavlis et al., 2009].
Trajectory arcs up to a few days in length were integrated
using force models, and various arc parameters were itera-

tively modified to best fit the tracking observations. The
major constraints on the spacecraft orbits are range-rate
(S-Band Doppler) measurements, although a significant
amount of range data were collected by the Lunar Prospec-
tor mission. The partial derivatives of those measurements
with respect to the spherical harmonics functions were
calculated and accumulated into a set of normal equations
up to degree and order 150. A first gravity solution was
obtained by applying the Kaula’s law such that the variance
of each spherical harmonic coefficient follows 6.25 � 10�8

l�4 [Konopliv et al., 2001].

3. Localized Spherical Basis Functions

[6] For the locally-constrained solution, we first express
the gravity field using alternative basis functions localized
at the nearside and at the farside. Both sets of the basis
functions are orthogonal and span the same vector space
constructed by usual spherical harmonic basis functions
[Simons and Dahlen, 2006]. Figures 1a and 1b show two
examples of spherical, orthonormal, and localized basis
functions; Figure 1a is concentrated within the nearside,
and Figure 1b is concentrated within the farside. As
discussed by Han [2008], the parameterization with respect
to those localized basis functions can be done simply by a
linear transformation of the spherical harmonic functions.
The nearside gravity field, when parameterized with those
basis functions, can be resolved even with the farside
tracking data gap. However, an a priori constraint is
mandatory to resolve the basis functions concentrated on

Figure 1. Examples of spherical basis functions concen-
trated on the (a) nearside and (b) farside. The inside of the
gray cap contains the nearside area where the power law
constraint may not be applied. Both functions are global-
support, harmonic, orthogonal, and expanded using sphe-
rical harmonic functions to degree and order 100. The
amplitude (color scale) may change depending on normal-
ization convention. (c) Degree RMS curves of the globally-
constrained gravity solution and its error estimate and of the
signal and error estimates localized at the nearside and
farside.

Figure 2. (top) Degree RMS of the globally-constrained solution, locally-constrained solution, LP150Q, ULCN, and
LALT uncompensated topography (a) at the nearside and (b) at the farside. (bottom) Correlation of the globally-constrained
solution, locally-constrained solution, and LP150Q with LALT topography (c) at the nearside and (d) at the farside.

L11203 HAN ET AL.: IMPROVED NEARSIDE GRAVITY OF THE MOON L11203

2 of 5



the farside. Unlike Han [2008], we construct the global
gravity field using concentrated basis functions at the
nearside (with a concentration ratio greater than 0.5) and
their complements.
[7] Figure 1c shows the global gravity model estimated

with various satellite tracking data as described in Section 2
by applying the Kaula’s power law globally such as was
done by Lemoine et al. [1997] and Konopliv et al. [2001].
The linear transformation matrix was applied to decompose
the global spherical harmonic solution into the nearside and
farside gravity fields separately. In addition, the full error
covariance matrix of the global gravity solution was prop-
agated to compute the error estimates of the gravity field
coefficients localized over the nearside and the farside.
Since the errors of the lunar gravity model are highly
non-stationary, the global error estimate is heavily biased
toward the farside error. However, when the error covari-
ance matrix is localized, we can quantify the nearside
gravity signal-to-noise ratio (SNR). It is larger than 10 up
to degree 60, and is greater than unity up to degree 140,
beyond which the signal aliasing effect causes increasing
power with increasing degree. On the other hand, the farside
gravity estimate is of poorer quality with SNR slightly
larger than or close to unity for most degrees (except

very low degrees) and no longer significant beyond
degree 70 or so.

4. Global Gravity Field With the Localized Power
Law Constraint

[8] For our new global gravity solution, the normal matrix
calculated by integrating the equations of motion and param-
eterized with the spherical harmonic basis was transformed
and expressed in the localized spherical basis as described in
Section 3. Then we implemented the power law constraint in
terms of the alternative basis functions. Only the basis
functions concentrated on the farside including the limb
region were constrained for the least-square solution with
the same Kaula rule as previously. In contrast, the gravity
field over the nearside (delineated with a spherical cap
centered at 0�N and 0�E with a cap size of 80�; see the circle
in Figure 1) is recovered relying on the tracking data alone.
We address the improvement of the nearside gravity by
comparing the locally-constrained and globally-constrained
gravity solutions, LP150Q gravity [Konopliv et al., 2001],
ULCN topography [Archinal et al., 2006], and SELENE
LALT topography [Araki et al., 2009].
[9] Figures 2a and 2b show the degree RMS of the

gravitational potentials caused by uncompensated topogra-
phy and of LP150Q, globally-constrained solution, and
locally-constrained solution at the nearside and the farside.
In both hemispheres, significant differences exist between
LALT and ULCN topography, indicating that ULCN
topography is probably too smooth. For the nearside, all
three gravity models follow the LALT topography power
spectrum to degree 80 or so; however, beyond such
degree, LP150Q and globally-constrained solution follow
the ULCN topography power spectrum by lacking power
in higher degrees. Meanwhile, the locally-constrained
solution follows the LALT topography power spectrum
to degree 140, where the aliasing effect starts to be
pronounced. Within the band from degree 90 to 130, the
agreement of the power spectra between the locally-
constrained solution and LALT topography is outstanding,
which can be noted in how closely the curves match, even
for small degree-range jumps. This shows that, when
applied globally, the Kaula constraint artificially dimin-
ishes the nearside gravity information, especially at the
high degrees (l,m � 100). Over the farside, all gravity
solutions follow ULCN topography, significantly losing
power with increasing degree. This is not surprising as all
three gravity solutions had little observational contribution
and were obtained by means of the power law to degree
and order 150.
[10] Figures 2c and 2d present the correlation of the three

gravity solutions with LALT topography. On the nearside
and for the high degrees (l,m � 100), GSFC’s globally-
constrained solution is more correlated with topography than
LP150Q (partly due to the use of LP data with higher
weights), but the correlation in the locally-constrained solu-
tion is even better. However, for the low degrees (l,m � 80)
and over the farside, LP150Q shows better correlation while
the topography correlation of both GSFC solutions are
essentially the same. The lower correlation of GSFC gravity
fields over the farside could be partially due to the lack of
Lunar Orbiter 1–3 data, not incorporated at this time.

Figure 3. (top) Radial gravity, evaluated at the mean
surface and truncated at degree 140, from the locally-
constrained solution for (a) the nearside and (b) the farside.
(bottom) Radial gravity difference between the locally-
constrained and globally-constrained solutions for (c) the
nearside and (d) the farside. The gray circle delineates the
nearside area where the Kaula’s power law constraint is not
applied. The black circles show the local areas of interest in
the nearside, highlighting the additional signals not
diminished by the power law.
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[11] The radial gravity component computed from the
locally-constrained solution and its difference with the
globally-constrained solution are shown in Figure 3, over
both the nearside and farside hemispheres. It highlights the
additional anomalies that were diminished by the power law
in the globally-constrained solution. Because the localized
basis functions have global-support to satisfy the harmonic
condition on a sphere, there are small but non-zero differ-
ences, less than �10 mGal (10�5 m/s2), over the farside and
at long wavelengths between the globally- and locally-
constrained solutions. The unconstrained basis functions,
although mostly concentrated over the nearside, still have a
(minor) impact over the farside.
[12] Figure 4 shows degree RMS, topography correlation,

and admittance from the three gravity solutions, localized in
four individual regions of interest over the nearside (black
circles in Figure 3), following Wieczorek and Simons
[2005]. In all the regions, the locally-constrained gravity
solutions, which were not affected by the power law, yield
power spectra following the gravitational power spectra of
the uncompensated LALT topography better than the other

gravity solutions. Similarly to what was seen within the
whole nearside region, when constrained by the power law,
the power at higher degrees (l,m � 100) is too low.
Although the Kaula power law constrains only the ampli-
tude of each gravity coefficient, the phase of gravity
coefficient is also affected when applied in the least-square
inversion, which is evident from a cross correlation with
topography. The locally-constrained gravity field shows
improved correlation with LALT topography over the
subset nearside regions, which is most notable at high
degrees. The correlation of the locally-constrained solution
(the most preferable solution) with ULCN topography is far
below the one with LALT topography, indicating a signif-
icant improvement in the new LALT topography.
[13] The admittance spectrum is computed by multiply-

ing the square-root of the ratio between gravity and topog-
raphy power spectra to the correlation spectrum as follows:

Fgh

Fhh

¼ Fghffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FggFhh

p
ffiffiffiffiffiffiffiffi
Fgg

Fhh

s
; ð1Þ

Figure 4. Degree RMS, correlation, and admittance of gravity and topography localized at various regions centered at
(a) 60S/0E, (b) 60N/0E, (c) 20S/60W, and (d) 20S/60E (from Top to Bottom) marked with the black circles in Figure 3. For
degree RMS, LP150Q (blue), globally-constrained solution (green), locally-constrained solution (red), uncompensated
topography of ULCN (magenta) and LALT (cyan). For correlation, LP150Q and LALT (blue), globally-constrained
solution and LALT (green), locally-constrained solution and LALT (red), and locally-constrained solution and ULCN
(cyan). For admittance, LP150Q and LALT (blue), globally-constrained solution and LALT (green), and locally-constrained
solution and LALT (red).
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where Fgg and Fhh are the power spectrum of the gravity
and topography, respectively. Fgh is the cross power

spectrum between gravity and topography.
Fgh

Fhh
and

Fghffiffiffiffiffiffiffiffiffiffi
FggFhh

p

are the admittance and correlation spectrum, respectively.
They are computed at each degree averaging over orders
(i.e., azimuth-average). The power law constraint tends to
diminish Fgg especially at higher degrees, and yields under-

prediction of the gravity-topography ratio,

ffiffiffiffiffiffi
Fgg

Fhh

q
. However,

this can be alleviated by localizing the power law only over
the farside, and thus the gravity-topography power ratio
can then be better estimated over the nearside. Conse-
quently, in addition to improving the correlation, the
locally-constrained gravity solution yields even further
improvement in the admittance estimates.
[14] Low correlation and negative admittance appear in

low degrees from all gravity solutions, due to the lunar mass
concentrations [Muller and Sjogren, 1968]. We looked at
various other nearside regions and found enhancement in
degree RMS, correlation, and admittance for all the cases
except the area centered around 40�N and 60�W where no
significant high-frequency gravity and topography signals
are expected.

5. Summary

[15] We report improvement in the global gravity solution
of the Moon by implementing a power law constraint
effective only within the farside and the limb region. The
gravity field over the nearside is not optimally estimated
with a globally-applied power law constraint, especially at
high degrees. Differences of several tens of mGal were
found between the locally- and globally-constrained solu-
tions over the nearside. Most of these differences are likely
to be actual signals since they reconcile the gravity solution
with the power spectrum of uncompensated topographical
potential and increase the correlation with topography. The
admittance estimates, that are most critical to reveal the
physical processes of the lunar surface and interior, are most
significantly improved. We quantified the gravity signal and
(highly non-stationary) error estimates over the nearside and
farside, separately. A more realistic error spectrum estimate
of the nearside gravity was demonstrated by performing a
full error covariance propagation, as also discussed by
Floberghagen et al. [1999]. Although the areas to be con-
strained by the power law should be optimized considering
the intrinsic signal strength, tracking data coverage, and data
noise, the new technique demonstrated in this study shows
promising results by better exploiting the nearside observa-
tions for the global gravity analysis. This study can easily be

extended to process the data from other lunar missions such
LRO, and other planet-orbiting satellite missions such as
Mars Reconnaissance Orbiter (for instance, to improve the
gravity field over Tharsis). It could be beneficial for the
Mercury gravity field, because the MESSENGER spacecraft
will be in a very elliptical orbit, much closer to the planet and
thus more sensitive to short-wavelength gravity anomalies
over the Northern hemisphere.
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